1 ère GÉNÉRALE — Exercices de révisions (e.d.s. mathématiques)

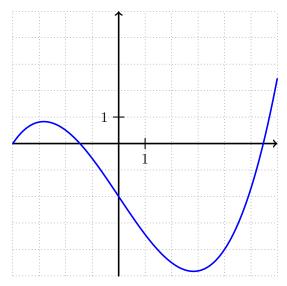
DÉBUT D'ANNÉE

1 | 1 | 15 min | Soit $f(x) = x^2 + x + 1$.

- a) Calculer f(0), f(1) et f(2).
- b) Calculer f(-3/2).
- c) Trouver (tous) les antécédents de 1 par f.
- d) Résoudre f(x) = f(-x).

2 [8 min] Soit f(x) = 2 - x. Calculer

$$\underbrace{f(f(f(f(f(f(\dots f(3)\dots)))))),}_{100 \text{ fois le } f}(3)\dots))))),$$


c'est-à-dire l'image de l'image de l'image de etc. de l'image de 3.

3 [12 min] Résoudre les équations suivantes :

- a) 2x + 1 = 3x 5, b) $(x + 1)^2 = x^2$,

- c) $4x^2 = 16$, e) $(x-2)^2 = 4$, d) $x^2 + x + 1 = x$, f) (x+1)(x-3) = 0.

4 [15 min] Voici une fonction $f: [-4; 6] \rightarrow \mathbf{R}$ ou plutôt voici sa courbe représentative.

- a) Donner les valeurs de f(0), f(1) et f(2).
- b) Quels semblent être les points à coordonnées entières sur la courbe?
- c) Donner (tous) les antécédents de 0 par f, puis dresser son tableau de signes.
- d) Dresser le tableau des variations de f et y faire apparaître les extremums locaux.

5 [20 min] Dresser les tableaux de signes des fonctions suivantes:

- a) $f_1(x) = (x+1) \times (2x-3)$,
- **b)** $f_2(x) = (4-x) \times (3-x),$
- c) $f_3(x) = 2x \times (x+1)^2$,
- d) $f_4(x) = \sqrt{x^2 + 1}$.

6 [3 min] Rappeler les trois premières identités remarquables.

7 🚶 [6 min] Développer et réduire :

- a) $(x+1) \times (x+2)$, b) $(2x+1) \times (x+2)$,
- c) $(x+1) \times (2x+2)$, d) $(2x+1) \times (1-2x)$.

8 🚶 [6 min] Développer et réduire :

- a) $(3x 2y)^2$,
- **b)** $(x^2+1)^2$,
- c) $(x + 2y) \times (x 2y)$, d) $\left(x \frac{1}{x}\right)^2$.

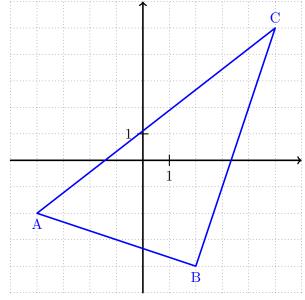
9 [3 min] On considère $f(x) = x^2$. Donner une expression simple pour f(3x) - f(2x).

10 | [5 min] Reprendre l'exercice précédent avec $f(x) = (x+1)^2.$

11 4 min Comment se simplifie $((x^4)^3)^2$? Et $x^{4^{3^2}}$? Commenter.

12 | 5 min Compléter ce tableau de proportionnalité sans utiliser la calculatrice :

4	12	16	20	30	50
	30				

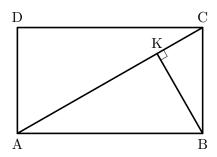

13 | [8 min] Simplifier les fractions suivantes :

- a) $\frac{2}{6}$, b) $\frac{7}{28}$, c) $\frac{10}{45}$, d) $\frac{30}{12}$, e) $\frac{50}{42}$, f) $\frac{17}{51}$, g) $\frac{16}{18}$, h) $\frac{15}{25}$.

14 [12 min] Sans calculatrice, trouver les fractions irréductibles égales à :

- a) $\frac{1}{2} + \frac{1}{3}$, b) $\frac{1}{2} \frac{1}{5}$, c) $\frac{3}{4} + \frac{4}{5}$, d) $\frac{5}{4} \frac{3}{5}$, e) $\frac{7}{4} + \frac{1}{9}$, f) $\frac{7}{2} + \frac{12}{3}$.

15 [18 min] Le repère ci-dessous est orthonormé; on y a placé trois points.


- a) Relever les coordonnées de A, de B et de C.
- b) Calculer AB, BC et CA. On demande les valeurs
- c) Le triangle ABC est-il rectangle? Justifier soigneusement la réponse.
- d) Calculer l'aire de ABC.

16 [5 min] Dans l'exercice précédent, déterminer une équation de la droite (AC) et en déduire l'ordonnée à laquelle cette droite coupe l'axe des ordonnées.

17 [10 min] Toujours sur la même figure, on trace une droite horizontale passant par le point A: celle-ci coupe la droite (BC) en un point I. Calculer la longueur AI.

18 | 10 min Encore sur la même figure, on note O l'origine du repère. En « comptant les carreaux » astucieusement, calculer l'aire du triangle AOC.

19 [25 min] Dans la figure ci-dessous, ABCD est un rectangle de dimensions $AB = 7 \,\mathrm{cm}$ et BC = $4\,\mathrm{cm}$.

- a) Calculer l'angle BAK.
- b) Calculer, peu importe dans quel ordre, les longueurs AK, BK et CK. Y a-t-il besoin d'utiliser des angles et de la trigonométrie?
- c) Calculer les aires des triangles DAC, KAB et BCK.

20 1 [6 min] Dans la grille ci-dessous, on place au hasard trois croix (dans trois cases différentes). On admet qu'il y a 84 issues dans cette expérience.

On considère l'événement A: « les trois croix sont alignées ». Énumérer, en les dessinant, toutes les issues qui réalisent A, et en déduire la probabilité correspondante.

[2 min] Calculer $9 \times 10 \times 11 \times 12$ sans utiliser la calculatrice.

22 [2 min] Idem : $10 \times 15 \times 20 \times 25 \times 30$.

2