1^{ière} générale — mathématiques (spécialité) — chapitre I

FONCTIONS POLYNOMIALES ET RATIONNELLES

Objectifs techniques

- 1.1 Fonctions polynomiales
- T-1.1) Reconnaître le degré et les coefficients d'une expression polynomiale.
- T 1.2) Développer un produit de deux facteurs.
- T-1.3) Développer un produit de trois facteurs ou davantage.

Exemple:

$$(x+3) \times (2x-5) \times (3-4x) = [(x+3) \times (2x-5)] \times (3-4x)$$

$$= [2x^2 + 6x - 5x - 15] \times (3-4x)$$

$$= (2x^2 + x - 15) \times (3-4x)$$

$$= 6x^2 + 3x - 45 - 8x^3 - 4x^2 + 60x$$

$$= -8x^3 + 2x^2 + 63x - 45.$$

- T-1.4) Dresser le tableau de signes d'une fonction polynomiale dont on connaît une écriture factorisée.
- T 1.5) Résoudre une équation-produit.
- T-1.6) Donner les définitions : « f est croissante sur l'intervalle I », « f est décroissante sur l'intervalle I », « f est monotone sur l'intervalle I », et les trois mêmes en ajoutant « strictement ».

DÉFINITION. — Soit $f: \mathcal{D} \to \mathbf{R}$ une fonction et soit $I \subseteq \mathcal{D}$ un intervalle. On dit que f est *croissante* sur I lorsqu'elle y *préserve* la relation $\leq \infty$: pour tous $u, v \in I$ la relation $u \leq \infty$ implique $f(u) \leq f(v)$.

DÉFINITION. — Soit $f: \mathcal{D} \to \mathbf{R}$ une fonction et soit $I \subseteq \mathcal{D}$ un intervalle. On dit que f est décroissante sur I lorsqu'elle y renverse la relation \leq : pour tous $u, v \in I$ la relation $u \leq v$ implique $f(u) \geq f(v)$.

DÉFINITION. — Soit $f: \mathcal{D} \to \mathbf{R}$ une fonction et soit $\mathbf{I} \subseteq \mathcal{D}$ un intervalle. On dit que f est monotone sur \mathbf{I} lorsqu'elle n'y change pas de sens de variation, c'est-à-dire f est croissante sur \mathbf{I} , ou bien f est décroissante sur \mathbf{I} .

T-1.7) Démontrer qu'une fonction n'est pas monotone sur un intervalle.

Exemple: montrons que $f(x) = x^3 - 4x + 2$ n'est pas monotone sur $[0; +\infty[$. Soit en essayant au hasard, soit (si c'est autorisé) en s'aidant de la courbe sur la calculatrice, on trouve des valeurs qui permettent de

conclure. Par exemple f(0) = 2, f(1) = -1 et f(2) = 2. On a f(0) < f(1) et f(1) > f(2), donc f n'est pas monotone sur $[0; +\infty[$.

1.2 Racines d-ièmes

T-1.8) Connaître les carrés parfaits jusqu'à 20^2 , ainsi que $25^2=625$, $30^2=900$ et $32^2=1024$.

nombre	carré
0	0
1	1
2	4
3	9
4	16
5	25
6	25 36

nombre	carré
7	49
8	64
9	81
10	100
11	121
12	144
13	169

nombre	carré
14	196
15	225
16	256
17	289
18	324
19	361
20	400

 $\mathbf{T} - \mathbf{1.9}$) Donner les définitions de : « $\sqrt[d]{x}$ » (lorsque d est pair), « $\sqrt[d]{x}$ » (lorsque d est impair).

DÉFINITION. — Soit d un entier pair au moins égal à deux et soit x un réel positif. On appelle racine d-ième de x l'unique nombre positif qui, multiplié d fois par lui-même, donne x. On le note $\sqrt[d]{x}$.

Remarque: la racine d-ième d'un réel strictement négatif n'existe pas.

DÉFINITION. — Soit d un entier impair au moins égal à trois et soit x un réel quelconque. On appelle $racine\ d$ -ième de x l'unique nombre qui, multiplié d fois par lui-même, donne x. On le note $\sqrt[d]{x}$.

Exemple: $\sqrt[3]{-27} = -3$, puisque $(-3) \times (-3) \times (-3) = -27$.

T-1.10) Sans calculatrice, donner les valeurs approchées à 0,001 près de $\sqrt{2}$, $\sqrt{3}$, $\sqrt{8}$, $\sqrt{12}$, $\sqrt{2}/2 = 1/\sqrt{2}$, $\sqrt{3}/3 = 1/\sqrt{3}$ et $\sqrt{3}/2$.

Les deux premiers sont à apprendre par cœur.

racine carrée	valeur approchée
$\sqrt{2}$	1,414
$\sqrt{3}$	1,732

Pour les autres, on utilise les propriétés des racines carrées.

Exemples:

$$\sqrt{8} = \sqrt{4} \times \sqrt{2} = 2 \times \sqrt{2} = 2 \times 1,732... \simeq 3,464...$$

$$\sqrt{300} = \sqrt{100} \times \sqrt{3} = 10 \times 1,732... \simeq 17,32...$$

$$\sqrt{\frac{5}{2}} = \frac{1,414...}{2} \simeq 0,707...$$

$$\sqrt{0,03} = \frac{\sqrt{3}}{\sqrt{100}} = \frac{1,732...}{10} \simeq 0,1732...$$

T-1.11) Trouver les valeurs interdites/le domaine de définition d'une expression avec des radicaux.

Exemple: déterminons le domaine de définition de $f(x) = \sqrt{4 - \sqrt{x}}$. Il y a deux racines carrées donc deux problèmes (éventuels) à étudier: f(x) a du sens si et seulement si, d'une part, x est positif (pour que \sqrt{x} existe) et, d'autre part, $4 - \sqrt{x}$ est positif (pour que $\sqrt{4 - \sqrt{x}}$ existe). Or lorsque x est positif on a

$$4 - \sqrt{x} \ge 0$$
 $\stackrel{+\sqrt{x}}{\iff}$ $4 \ge \sqrt{x}$ $\stackrel{\uparrow^2}{\iff}$ $16 \ge x$.

En conclusion, f(x) a du sens lorsqu'on a simultanément $x \ge 0$ et $x \le 16$, c'est-à-dire lorsque $x \in [0; 16]$.

 $\mathbf{T} - \mathbf{1.12}$) Résoudre les équations de la forme $\mathbf{X}^d = y$ avec $d \ge 2$.

Exemples.

a) [Puissances paires.] Résolvons l'équation $(x+3)^2=5.$ On a

$$(x+3)^2 = 5$$
 \iff $x+3 = \sqrt{5}$ ou $x+3 = -\sqrt{5}$
 \Leftrightarrow $x = \sqrt{5} - 3$ ou $x = -\sqrt{5} - 3$.

L'ensemble des solutions est donc $\{-\sqrt{5}-3; \sqrt{5}-3\}$.

b) [Puissances impaires.] Résolvons l'équation $(2x-5)^7=12$. On a

$$(2x-5)^7 = 12 \qquad \stackrel{7}{\Longleftrightarrow} \qquad 2x-5 = \sqrt[7]{12} \qquad \stackrel{+5}{\Longleftrightarrow} \qquad 2x = 5 + \sqrt[7]{12} \qquad \stackrel{\div 2}{\Longleftrightarrow} \qquad x = \frac{5+\sqrt[7]{12}}{2}.$$

T-1.13) Utiliser la quantité conjuguée.

Exemple:

$$\frac{4 - \sqrt{2}}{3 + 2\sqrt{2}} = \frac{(4 - \sqrt{2}) \times (3 - 2\sqrt{2})}{(3 + 2\sqrt{2}) \times (3 - 2\sqrt{2})} = \frac{12 - 3\sqrt{2} - 8\sqrt{2} + 2 \times (\sqrt{2})^2}{3^2 - (2\sqrt{2})^2}$$
$$= \frac{12 - 11\sqrt{2} + 4}{9 - 8} = \frac{16 - 11\sqrt{2}}{1} = 16 - 11\sqrt{2}.$$

 ${f T-1.14})$ Simplifier des expressions avec des radicaux (en utilisant leurs propriétés).

Exemples.

a)
$$\frac{8}{\sqrt{2}} = \frac{4 \times 2}{\sqrt{2}} = \frac{4 \times \sqrt{2} \times \sqrt{2}}{\sqrt{2}} = 4 \times \sqrt{2}.$$

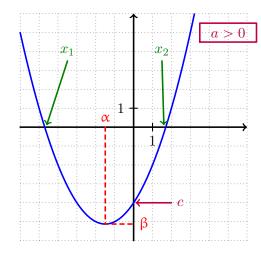
b)
$$\frac{\sqrt{30} \times \sqrt{40}}{\sqrt{27}} = \frac{\sqrt{3} \times \sqrt{10} \times \sqrt{4} \times \sqrt{10}}{\sqrt{3} \times \sqrt{9}} = \frac{10 \times 2}{3} = \frac{20}{3}$$
.

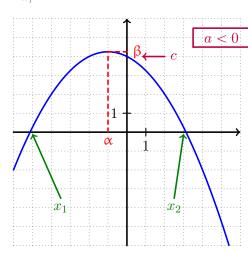
c)
$$\left(\sqrt[3]{5}\right)^6 = \left(\sqrt[3]{5}\right)^{2\times 3} = \left(\left(\sqrt[3]{5}\right)^2\right)^3 = \left(\sqrt[3]{5}\right)^3 = 5.$$

1.3 Propriétés des fonctions du deuxième degré

T – 1.15) Reconnaître $a, b, c, x_1, x_2, \alpha$ et β sur les expressions correspondantes.

T-1.16) Trouver c, α, β, x_1 et x_2 , ainsi que le signe de a, sur une courbe.





T-1.17) Déterminer α et β à partir de a, b et c et en déduire l'écriture canonique.

Exemple: soit $f(x) = 2x^2 - 4x - 1$. Il s'agit d'un trinôme, avec a = 2, b = -4 et c = -1. Les coordonnées du sommet de la parabole qui le représente sont

$$\alpha = -\frac{b}{2a} = -\frac{-4}{2 \times 2} = 1$$
 et $\beta = f(\alpha) = f(1) = 2 \times 1^2 - 4 \times 1 - 1 = -3$.

L'écriture canonique est donc

$$f(x) = a \times (x - \alpha)^2 + \beta = 2 \times (x - 1)^2 - 3.$$

T-1.18) Trouver les antécédents à partir de l'écriture canonique.

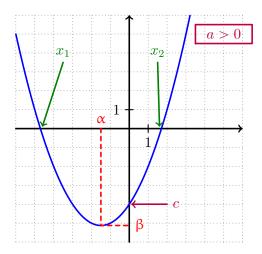
Exemple : soit $f(x) = 3 \times (x+2)^2 - 7$. Déterminons les antécédents de 5 par f. On a

$$f(x) = 5 \qquad \Longleftrightarrow \qquad 3 \times (x+2)^2 - 7 = 5 \qquad \stackrel{+5}{\Longleftrightarrow} \qquad 3 \times (x+2)^2 = 12 \qquad \stackrel{\div 3}{\Longleftrightarrow} \qquad (x+2)^2 = 4$$

$$\stackrel{\checkmark}{\Longleftrightarrow} \qquad x+2 = 2 \quad \text{ou} \quad x+2 = -2 \qquad \stackrel{-2}{\Longleftrightarrow} \qquad x = 0 \quad \text{ou} \quad x = -4.$$

Les antécédents de 5 par f sont donc -4 et 0.

T-1.19) Déterminer a, b et c par indentification à partir d'une courbe ou d'informations similaires. Exemple.



1.4 Relations entre les coefficients et les racines

 $\mathbf{T} - \mathbf{1.20}$) Résoudre $\left\{ \begin{array}{ll} x_1 + x_2 & = & \mathrm{S} \\ x_1 \times x_2 & = & \mathrm{P} \end{array} \right.$ en se ramenant à une fonction du deuxième degré, puis en utilisant l'écriture canonique ou bien la calculatrice.

Exemple.

T - 1.21) Trouver le terme dominant et le terme constant dans un produit de plusieurs fonctions polynomiales.

Exemple:

$$(x^2 + x + 2) \times (2x - 5) \times (x^3 + 2) = x^2 \times 2x \times x^3 + \dots + 2 \times (-5) \times 2 = 2x^6 + \dots - 20.$$

T - 1.22) Trouver le coefficient de x^{n-1} dans le produit de n fonctions affines dont le coefficient directeur vaut 1.

Exemple:

$$(x-4) \times (x-3) \times (x+5) \times (x+12) = x^4 + ((-4) + (-3) + 5 + 12)x^3 + \dots = x^4 + 10x^3 + \dots$$

- 1.5 Identités remarquables, factorisations forcées
- T 1.23) Connaître et utiliser les identités remarquables du deuxième degré.
- T-1.24) Connaître les identités remarquables du troisième degré.

Propriété. — Soient a et b deux nombres. On a les formules

$$(a+b)^3 = a^3 + 3a^2b + 3ab^2 + b^3,$$

$$(a-b)^3 = a^3 - 3a^2b + 3ab^2 - b^3,$$

$$a^3 + b^3 = (a+b) \times (a^2 - ab + b^2),$$

$$a^3 - b^3 = (a-b) \times (a^2 + ab + b^2).$$

- $\mathbf{T}-\mathbf{1.25}$) En particulier développer des expressions de la forme $(a+b\sqrt{d})^2$ ou $(a+b\sqrt{d})^3$.
- T-1.26) Mettre une fonction affine en facteur dans une expression polynomiale.
- T-1.27) Utiliser la méthode d'identification des coefficients.
 - 1.6 Fonctions rationnelles
- T 1.28) Trouver les valeurs interdites/le domaine de définition.
- T-1.29) Dresser le tableau de signes d'une fonction rationnelle dont on connaît une écriture factorisée.
- T-1.30) À partir d'une courbe, dresser un tableau de variations (avec les limites) et un tableau de signes.
- T 1.31) Utiliser les produits en croix.
- T 1.32) Étudier une fonction homographique.
- T-1.33) Résoudre une inéquation avec une fonction homographique.
- T 1.34) Faire un changement d'écriture par identification.