FONCTIONS POLYNOMIALES

1 Coefficients

DÉFINITION (FONCTION POLYNOMIALE).

Soit \mathscr{D} une partie de \mathbf{R} et soit $f: \mathscr{D} \to \mathbf{R}$ une fonction. On dit que f est polynomiale s'il existe un entier naturel d et des nombres $a_0, a_1, a_2, \ldots, a_d \in \mathbf{R}$ tels que pour tout $x \in \mathscr{D}$ on a

$$f(x) = a_d x^d + a_{d-1} x^{d-1} + \dots + a_2 x^2 + a_1 x + a_0.$$

Remarque. On rappelle que $x=x^1$ et que $1=x^0$: on aurait donc pu écrire ci-dessus a_1x^1 (à la place de a_1x) et a_0x^0 (à la place de a_0).

DÉFINITION (COEFFICIENTS D'UNE FONCTION POLYNOMIALE).

i) Soit i un entier naturel. Dans l'écriture

$$a_d x^d + a_{d-1} x^{d-1} + \ldots + a_2 x^2 + a_1 x + a_0$$

on dit que $a_i x^i$ est le terme de degré i et que a_i est le coefficient de degré i.

ii) Le terme (resp. le coefficient) de degré 0 est appelé le terme constant (resp. le coefficient constant).

Exemple: déterminer les coefficients dans $f(x) = x^3 - 4x + 5$.

On a $f(x) = 1x^3 + 0x^2 + (-4)x + 5$ donc $a_0 = 5$, $a_1 = -4$ (attention à ne pas oublier le signe!), $a_2 = 0$ (les termes ayant un coefficient nul ne sont pas écrits, mais cela ne veut pas dire qu'ils n'existent pas!) et $a_3 = 1$. Et on peut continuer : $a_4 = 0$, $a_5 = 0$, etc., puisqu'on aurait tout aussi bien pu écrire $f(x) = \dots + 0x^5 + 0x^4 + 1x^3 + 0x^2 + (-4)x + 5$.

Remarque. Nous verrons bientôt que lorsque le domaine de définition \mathscr{D} est infini (ce qui pour nous sera toujours le cas), une fonction f ne peut pas avoir deux écritures développées différentes. On peut donc dire « le coefficient de degré i de f » plutôt que « le coefficient de degré i dans une écriture de f ».

DÉFINITION (DEGRÉ D'UNE FONCTION POLYNOMIALE).

Soit f une fonction polynomiale et soient a_0 , a_1 , etc. ses coefficients.

- i) Le plus grand indice i tel que $a_i \neq 0$ s'appelle le degré de f. On le note $\deg(f)$.
- ii) Le terme (resp. le coefficient) de degré deg(f) est appelé le terme dominant (resp. le coefficient

Remarque. Soit f est une fonction polynomiale de degré d et soit a_d son coefficient dominant. On dit parfois que a_dx^d est le « terme de plus haut degré », bien qu'en réalité il y en a d'autres : $a_{d+1}x^{d+1}$, $a_{d+2}x^{d+2}$, etc. ; c'est juste qu'ils sont tous nuls.

(2) Trois écritures

- a) Cas général
- b) Cas particulier des fonctions affines

Rappelons qu'une fonction affine est de la forme f(x) = mx + p avec m le coefficient directeur et p l'ordonnée à l'origine. Il s'agit donc d'un cas particulier de fonction polynomiale, de degré 0 ou 1, selon que m = 0 ou $m \neq 0$ respectivement. Rappelons encore que la courbe représentative d'une fonction affine est une droite non verticale; elle est horizontale si m = 0 et « oblique » si $m \neq 0$.

Propriété (formule du coefficient directeur).

Soit f(x) = mx + p une fonction affine et soient x_1 et x_2 deux nombres distincts. Le coefficient directeur s'obtient par la formule

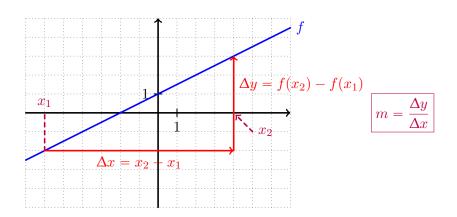
$$m = \frac{f(x_2) - f(x_1)}{x_2 - x_1}$$

(et ensuite on peut obtenir l'ordonnée à l'origine avec $p = f(x_1) - m \times x_1$).

Preuve. On part du membre compliqué et on essaie de le simplifier :

$$\frac{f(x_2) - f(x_1)}{x_2 - x_1} = \frac{(mx_2 + p) - (mx_1 + p)}{x_2 - x_1} = \frac{mx_2 + p - mx_1 - p}{x_2 - x_1} = \frac{m \times (x_2 - x_1)}{x_2 - x_1} = m.$$

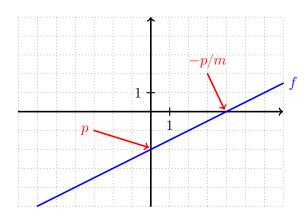
Puis $f(x_1) - mx_1 = (mx_1 + p) - mx_1 = mx_1 + p - mx_1 = p$. C.Q.F.D.



L'écriture factorisée existe toujours pour les fonctions affines. Lorsque m=0 on a f(x)=p et l'écriture factorisée se confond avec l'écriture développée. Lorsque $m \neq 0$ on a

$$mx + p = m \times \left(x + \frac{p}{m}\right) = m \times \left(x - \frac{-p}{m}\right)$$

et on voit apparaître l'unique racine -p/m de f. C'est l'abscisse d'intersection de la droite qui représente f et l'axe horizontal (rappelons que lorsque $m \neq 0$, cette droite n'est pas horizontale, elle coupe donc l'axe des abscisses).



L'écriture canonique est $f(x) = m \times (x - \alpha)^1 + \beta = m \times (x - \alpha) + \beta$. Elle existe toujours, et n'est pas unique. En fait, si l'on prend pour $(\alpha; \beta)$ les coordonnées de n'importe quel point par lequel passe la droite qui représente f, on obtient une écriture canonique de f: c'est l'objet de la prochaine

Propriété (forme canonique pour les fonctions affines).

Soit f(x) = mx + p une fonction affine. Pour tout point $(\alpha; \beta)$ sur la droite qui représente f, on a

$$f(x) = m \times (x - \alpha) + \beta.$$

Preuve. Puisque $(\alpha; \beta)$ est un point de la courbe représentative, β est l'image de α , c'est-à-dire

$$\beta = f(\alpha) = m\alpha + p.$$

Maintenant vérifions que les deux expressions sont égales :

$$m \times (x - \alpha) + \beta = m \times (x - \alpha) + (m\alpha + p) = mx - m\alpha + m\alpha + p = mx + p = f(x).$$

C.Q.F.D.

Remarque. Lorsqu'on choisit pour α l'abscisse du point d'intersection avec l'axe horizontal, c'est-à-dire $\alpha = -p/m$ et $\beta = 0$, l'écriture canonique se confond avec l'écriture factorisée :

$$f(x) = m \times \left(x - \frac{-p}{m}\right) + 0.$$

- (3) Théorème du produit nul
- 4 Tableau de signes
- (5) Exemples de courbes représentatives